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A B S T R A C T   

Understanding spatiotemporal variability in precipitation and temperature and their future 
projections is critical for assessing environmental hazards and planning long-term mitigation and 
adaptation. In this study, 18 Global Climate Models (GCMs) from the most recent Coupled Model 
Intercomparison Project phase 6 (CMIP6) were employed to project the mean annual, seasonal, 
and monthly precipitation, maximum air temperature (Tmax), and minimum air temperature 
(Tmin) in Bangladesh. The GCM projections were bias-corrected using the Simple Quantile 
Mapping (SQM) technique. Using the Multi-Model Ensemble (MME) mean of the bias-corrected 
dataset, the expected changes for the four Shared Socioeconomic Pathways (SSP1-2.6, SSP2- 
4.5, SSP3-7.0, and SSP5-8.5) were evaluated for the near (2015–2044), mid (2045–2074), and 
far (2075–2100) futures in comparison to the historical period (1985–2014). In the far future, the 
anticipated average annual precipitation increased by 9.48%, 13.63%, 21.07%, and 30.90%, 
while the average Tmax (Tmin) rose by 1.09 (1.17), 1.60 (1.91), 2.12 (2.80), and 2.99 (3.69) ◦C 
for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. According to predictions for the 
SSP5-8.5 scenario in the distant future, there is expected to be a substantial rise in precipitation 
(41.98%) during the post-monsoon season. In contrast, winter precipitation was predicted to 
decrease most (11.12%) in the mid-future for SSP3-7.0, while to increase most (15.62%) in the 
far-future for SSP1-2.6. Tmax (Tmin) was predicted to rise most in the winter and least in the 
monsoon for all periods and scenarios. Tmin increased more rapidly than Tmax in all seasons for 
all SSPs. The projected changes could lead to more frequent and severe flooding, landslides, and 
negative impacts on human health, agriculture, and ecosystems. The study highlights the need for 
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localized and context-specific adaptation strategies as different regions of Bangladesh will be 
affected differently by these changes.   

1. Introduction 

Climate change (CC) is currently the most pressing environmental concern of the twenty-first century. Its impact on food security is 
already evident, with changes in precipitation patterns, rising air temperatures, and more recurring extremes [1,2]. This issue is 
compounded by inadequate management of environmental resources and a limited ability to adapt in developing countries [3,4]. 
Bangladesh, as a developing country, is highly exposed to climatic shifts. They experienced a substantial rise in air temperature, 
monsoon and post-monsoon precipitation, while winter precipitation decreased during the late twentieth century due to CC [5–7]. 
Extreme weather events directly attributable to climatic changes have become increasingly common in recent years and have been 
responsible for substantial financial losses and human casualties in Bangladesh [8,9]. As global warming continues, extreme weather 
trends are projected to continue throughout the present century [10–12]. Thus, knowing how precipitation and air temperature will 
alter is vital to develop effective strategies for reducing climatic risk. 

The Global Climate Models (GCMs) are the fundamental tool for understanding the potential impacts of CC [13,14]. Previous 
studies on the future climate of Bangladesh have mostly used GCMs from CMIP3 [15,16] and CMIP5 [7,10,11,17–19]. The Coupled 
Model Intercomparison Project phase 6 (CMIP6) GCMs based on CMIP6 are improved forms of preceding CMIPs in a number of ways, 
including better geographical resolution and improved modelling of cloud microphysical processes [20,21]. Therefore, the CMIP6 
GCM ensemble is more reliable for climate projections than the previous CMIP ensembles. 

GCMs contain systematic biases related to the observations [22]. Bias removal of GCM outputs is needed to study local- and 
regional-scale CC impacts on different sectors [23–25]. Dynamical and statistical techniques are used for downscaling and bias 
correction of GCM predictions. Statistical downscaling techniques develop statistical relations between reference datasets (Observed) 
and GCM outputs. In contrast, dynamical techniques involve a regional climate model (RCM) embedded within a GCM to produce 
high-resolution climate data [26]. Each technique has some benefits and shortcomings. The key disadvantages of dynamic down-
scaling strategies are high computing costs, data storage and errors [27]. Consequently, statistical methods are extensively employed 
in CC impact and adaptation research. 

A wide range of techniques are used for correcting GCM biases, including quantile mapping [25], delta change [28], and mean 
correction [29]. Amongst them, quantile mapping methods are widely recognized as the most reliable [30–32]. This research used a 
quantile-based technique to correct the biases. Additionally, it is challenging to manage substantial uncertainty in GCM predictions. 
Climate projections are prone to three main types of uncertainty: future emissions (uncertainty associated with scenarios), internal 
climatic variability, and inter-model differences. Internal variability is essentially stable throughout time series, but other uncertainties 
increase with time but at varying rates. Different methodologies have yielded similar results, indicating no ideal way to separate the 
uncertainty [33]. Although various approaches have been suggested to deal with the uncertainty of climate projections, model 
ensembling is being most widely suggested to solve this problem and improve projection accuracy and reliability [29,34]. 

CC is a growing concern worldwide, leading to increased research on climate parameters and elements. Researchers have predicted 
changes in temperature and precipitation using GCMs in various regions. Numerous studies have investigated future CC using CMIP6 
GCMs [35–38]. In India, Sarkar et al. [39] found that precipitation is expected to decrease by 9–27% in future periods. Summer rainfall 
in Korea is forecast to drop while becoming more intense, according to research [40]. Meanwhile, Leong Tan et al. [41] evaluated the 
effects of climate change on Malaysia’s water resources and found that the country can anticipate more precipitation during the wetter 
months and fewer during the drier months. 

Summer rainfall in the southeastern United States has been shown to rise significantly under the influence of rising temperatures 
and water vapour flow, according to research Ferreira et al. [42]. According to the HadGEM2 model predictions for the Urmia Lake 
basin in northwestern Iran by Heydari et al. [43], precipitation is expected to decrease while temperature increases in the near future. 
Jiang et al. [44] projected a substantial increase in average annual rainfall for Central Asia by the end of the 21st century based on 15 
models from the CMIP6 under four SSP scenarios. Finally, Yue et al. [38] examined changes in temperature and precipitation in the 
Yangtze River Basin in China and concluded that they will probably increase in the long term under different SSP scenarios, with some 
degree of uncertainty surrounding the exact values predicted. 

Qin et al. [45] found better simulation for projecting temperature changes using five CMIP6 models than precipitation changes for 
northwest China. Regardless of the scenario, significant increases in both temperature and precipitation are expected in the 21st 
century. You et al. [46] utilized 20 GCMs from CMIP6 and three SSPs scenarios to forecast temperature changes in China. They 
determined that temperature is expected to increase in all future periods. 

Progress has also been made in projecting the climate of Bangladesh [21,47–49]. Kamruzzaman et al. [48,49] assessed the relative 
performance of CMIP6 models. Kamal et al. [47] used six CMIP6 GCMs to estimate changes in precipitation and drought in Bangladesh 
for the two shared socioeconomic pathways (SSP1-1.9 and SSP1-2.6). Recently, Das et al. [21] assessed extreme rainfall characteristics 
using four CMIP6 GCMs for two emission scenarios. Since the simulation results depend on the models employed, it is more insightful 
to investigate changes in air temperature and precipitation in Bangladesh from a large set of models and diverse scenarios. The spatial 
and temporal trends and variability in future precipitation and temperature changes on seasonal and annual timescales are poorly 
understood. Moreover, none of the previous studies used a wide range of CMIP6 models and scenarios for projecting Bangladesh’s 
climate. The present study is expected to address this gap. 
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The primary objective of this work was to shed light on the future of rainfall, maximum temperature (Tmax), and minimum 
temperature (Tmin) in Bangladesh using the most recent CMIP6 dataset. The aims of this study were to (1) assess how well CMIP6 
models reproduced observed patterns of precipitation and temperature; (2) investigate the spatiotemporal variability and changes in 
projected precipitation and temperature; and (3) investigate the seasonal and annual precipitation, and temperature trends during the 
near (2015–2044), mid (2045–2074), and far (2075–2100) futures in Bangladesh. This study examined the annual and seasonal 
change in precipitation, Tmax, and Tmin only as they are the most critical climate variables for studying climate change impacts 
assessment and adaptation planning. 

2. Study region and facts 

2.1. Bangladesh 

Bangladesh, a country in south Asia, is located between 20◦34′N and 26◦38′N and 88◦01′E and 92◦41′E (Fig. 1). With the exception 
of the hilly regions in the southeast and east, most of the 1,48,460 km2 land of the country consists of flood plains. There are low-lying 
areas with “delta-shaped” landforms due to elevation ranges 1–60 m above mean sea level [50]. Bangladesh experiences four distinct 
seasons, which are as follows: winter (December–February), pre-monsoon (March–May), monsoon (June–September), and 
post-monsoon (October–November), as stated by Jerin et al. [51]. The winter is very dry, whereas the monsoon season receives the vast 
bulk of its annual precipitation. Northwest-to-northeast rainfall ranges from 1500 to 4000 mm [52]. The highest summertime tem-
peratures typically range from around 38 to about 41 ◦C. April is the hottest month while January is the coldest (with mean daytime 

Fig. 1. Topographic map of the study area. The elevation expressed in meters above means sea level. Source: Digital Elevation Model (DEM) from 
https://earthexplorer.usgs.gov/. 
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highs of 16–20 ◦C and lows of approximately 10 ◦C throughout the country). Evapotranspiration is 3.72 mm d− 1 and the mean daily 
relative humidity is 80% [9]. Bangladesh is often hit by a variety of natural catastrophes, including but not limited to floods, cyclones, 
and droughts. This makes it highly vulnerable to disasters and CC. 

2.2. Data 

2.2.1. Reference data 
There are numerous temporal and spatial inconsistencies in the climate records of Bangladesh. A scant number of weather stations 

are dispersed unevenly across the country. Additionally, weather stations are infrequent in remote areas and hilly mountainous re-
gions. Grid-based climatic variables data for Bangladesh can be obtained from satellites and global model reanalysis. Based on rainfall 
and temperature detection metrics, ERA5 demonstrated superior performance in Bangladesh [53]. The ERA5 dataset was used by Zhai 
et al. [54] for predicting droughts in south Asian countries, including Bangladesh. Recently, Kamruzzaman et al. [49] used the ERA5 as 
reference data to evaluate the skills of CMIP6 GCMs in modeling rainfall data over Bangladesh. Therefore, we employed the ERA5 
reanalysis as a reference dataset in this investigation. The climate data for ERA5 was retrieved from the ECMWF website (https:// 
www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). The ERA5 was developed using a technique to interpolate in-situ 
precipitation datasets, which included infrared cloud datasets as a covariate. The present study employed an ERA5 dataset 
covering the years 1985–2014, with a spatial resolution of 0.25◦. 

2.2.2. Global Climate Models (GCMs) 
The Earth System Grid (ESG) Data Portal (https://esgf-node.llnl.gov/search/cmip6) was used to gather the simulation results of 18 

CMIP6 GCMs [14]. The GCMs were selected considering the availability of precipitation, Tmax, and Tmin simulations for SSP1-1.26, 
SSP2-4.5, SSP3-7.0, and SSP5-8.5. While there is no universally agreed upon “best performing” GCM, the selected models are widely 
used in climate modeling research and have been shown to produce reliable results in previous studies. The CMIP6 future scenario 
experiments are divided into main priority categories, including 1) the tier-1 experiments with SSPs (SSP1-1-2.6, SSP2-4.5, SSP3-7.0, 
and SSP5-8.5), and 2) the tier-2 experiments with SSPs (SSP1-1.9, SSP4-3.4, SSP4-6.0, and SSP5-3.4) [55]. The key features of each 
GCM, such as their developing institution and spatial resolution, are displayed in Table S1. This study only used the results from the 
first realization (r1i1p1f1) of each GCM to keep the evaluations consistent and to minimize the model bias. Considering the variable 
spatial resolutions among the models, a bilinear interpolation technique was used to re-grid the GCM historical simulations to the 
ERA5 grid resolution (0.25◦ × 0.25◦) for the assessment. Recently, Kamruzzaman et al. [49] used an analogous method to evaluate 
CMIP6 GCMs in Bangladesh. 

3. Methods 

3.1. Bias-correction 

Daily GCM simulations for the years 1985–2100 were downscaled to ERA5 resolution using the SQM method and then bias- 
corrected based on ERA5 data. The SQM approach uses empirical quantile mapping to refine GCM simulations independently. The 
following three-steps were: (1) extraction of the GCM data corresponding to each target ERA5 grid location, (2) assessment of GCM’s 
biases, and (3) bias-correction of projections. Using Eq. (1), the retroactive period differences between observed and simulated cu-
mulative distribution functions (CDFs) were calculated and applied to future simulations for a particular percentile: 

x′

p(t)= xp(t) +F− 1
obs

(
Fp.sim

(
xp(t)

))
− F− 1

r.sim

(
Fp.sim

(
xp(t)

))
(1)  

where GCM bias-corrected and raw predictions for day t are denoted by x′p(t) and xp(t), respectively. F(θ) and F− 1(θ) are a CDF of GCM 
simulations, θ, and its inverse, respectively. Subscripts p.sim, r.sim, and obs denote the projection, retrospective simulation, and ERA5 
daily data, respectively [7]. ERA5 and raw GCM data are used as inputs in an empirical equation that is not parametric because such 
approaches have been shown to be more effective at minimizing systematic bias than parametric methods [56]. 

3.2. Performance evaluation 

A graphical tool known as the Taylor Diagram is commonly used to present the performance of a model using a range of metrics 
[57]. It offers a concise overview of the statistical associations among the observations and models by depicting the root mean square 
(RMS) difference, correlation coefficient (R), and the ratio of standard deviations (SDs) of two patterns on a single graph [57]. 

Root Mean Square Deviation (RMSD): RMSD is a measure of the difference between predicted and observed values. It is often used 
to evaluate the accuracy of mathematical models or simulations. RMSD can be calculated by Eq. (2). 

RMSD=

̅̅̅
1
n

√
∑(

y pred − y obs
)2 (2)  

where: n is the number of observations, y_pred is the predicted value, y_obs is the observed value or true value. Σ is the summation 
operator that sums over all observations. 
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Standard Deviation: Standard deviation is a measure of the amount of variation or dispersion in a set of data. It is often used to 
describe the spread of a data set around its mean. Standard deviation (σ) can be calculated by Eq. (3). 

The formula for standard deviation is:  

σ = √(Σ(x_i - μ)2 / (n - 1))                                                                                                                                                               

σ=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑ (xi − μ)2

(n − 1)

√
√
√
√

⎞

⎠ (3)  

where: σ is the sample standard deviation. x_i is the i-th observation in the sample. μ is the sample mean. n is the sample size. Σ is the 
summation operator that sums over all observations. 

Correlation Coefficient: Correlation coefficient is a statistical measure that indicates the degree of linear relationship between two 
variables. Correlation Coefficient (r) can be calculated by Eq. (4). 

r=
∑(

(x i − μ x)
(
y i − μ y

))

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(x i − μ x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(∑ (

y i − μ y
)2
))√ (4)  

where: r is the Pearson correlation coefficient, x_i is the i-th observation in the x dataset, y_i is the i-th observation in the y dataset. μ_x is 
the mean of the x dataset, μ_y is the mean of the y dataset, Σ is the summation operator that sums over all observations. 

The numerator calculates the sum of the product of the deviations of x and y from their respective means, while the denominator is 
the product of the standard deviations of x and y. This formula is used to measure the linear relationship between two variables, x and 
y, ranging from − 1 (perfect negative correlation) to 1 (perfect positive correlation). 

The simulation of the model is optimal when RMS is nearer to 0, and R and the ratio of SDs are equivalent to 1. The ability of both 
the uncorrected and bias-corrected models was assessed using the Taylor Diagram. Previous studies have used the Taylor diagram to 
evaluate the GCMs [38,48,49]. 

3.3. Change analysis 

Precipitation and maximum and minimum temperatures were forecast using GCM historical and projected data for four different 
scenarios. Precipitation changes were expressed as percentages, while Tmax and Tmin were absolute changes. As defined earlier, the 
temperature and precipitation datasets were examined between the baseline timeframe and three different future periods (near, mid 
and far). 

Fig. 2. Taylor diagrams for raw (a,b,c) and bias corrected (d,e,f) annual mean precipitation (1st column), Tmax (2nd column), and Tmin (3rd 
column) of 18 CMIP6 GCMs and their MME mean for the historical period. 
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3.4. Trend analysis 

The future climatic trends were estimated using the trend-free pre-whitening Mann-Kendall (TFPW-MK) method [13]. The 
TFPW-MK method is better than the classical Mann-Kendall (MK) test [58,59] and is extensively used by scientists all over the globe to 
eliminate the effect of serial correlation on trend significance [60,61]. The TFPW-MK can preserve the actual trend in the series [62]. 
Moreover, Sen’s slope (SS) estimator was used to estimate the changing rate [59,63]. Additionally, SS has been routinely used to 
determine changes in hydro-meteorological data [11,52,64]. Statistical significance was determined using a critical probability value 
of 0.05 (p < 0.05). 

3.5. Multi-model ensemble (MME) mean 

The multi-model ensemble of 18 GCMs (18-MODEL ENSEMBLE) is calculated by Eq. (5).  

MME = 1/n * 
∑

(i = 1) ^n GCMs_i                                                                                                                                            (5) 

where n is the number of GCMs being used in the ensemble, GCMs_i represents the output of the ith GCM, and the symbol 
∑

(i = 1) ̂ n 
denotes the sum of the outputs of all the GCMs being used. The MME mean is the average of the outputs of all the GCMs, and it is used to 
produce a more reliable estimate of future climate conditions than any single model could provide. 

Fig. 3. Bias in the MME mean annual precipitation (%) (a) before and (b) after bias correction, Tmax (◦C) (c) before and (d) after bias correction, 
and Tmin (e) before and (f) after bias correction. 
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4. Results and discussion 

4.1. Bias-corrected outputs evaluation 

Fig. 2 shows the performance of GCM precipitation, Tmax, and Tmin using Taylor diagrams (Fig. 2a–c) and the bias-corrected 
(Fig. 2d–f) outputs with respect to the observations from 1985 to 2014. For rainfall, all raw model R-values were lower than 0.65 
(Fig. 2a). The model’s bias-corrected values were higher than 0.99 (Fig. 2d). Before bias-correction, the normalized SDs of rainfall 
ranged from 0.37 to 1.5. At the same time, it was closer to 1 after bias-correction, suggesting that the rainfall SDs were near to ERA5 
SDs. The SQM decreased the centered RMS deviations. Similarly, the normalized SD and R values were all nearer to 1, and the RMS 
values were low for bias-corrected Tmax and Tmin compared to rows Tmax and Tmin. Overall, all 18 GCMs’ performance improved 
after applying SQM. Fig. 2 also demonstrates that the MME mean of the models was superior to that of individual models in simulating 
all climate variables when the models were given equal weight in developing the MME. In particular, the MME had higher R-values 
(>0.99) than individual models for rainfall, Tmax, and Tmin. MME’s normalized SDs were closer to the individual models, and MME’s 
centered RMS deviations in the three climatic parameters were lower than the individual models. In general, the MME outperforms 
individual models. The average MME precipitation, Tmax, and Tmin biases for 1985–2014 prior and post bias correction are shown in 
Fig. 3. The results suggest that the MME of CMIP6 GCMs had a significant bias before bias correction (Fig. 3a, c, e). For instance, the 
rainfall over Bangladesh was overestimated but underestimated in the northeastern region (bias >60%), and Tmax and Tmin were 
underestimated before bias correction (Fig. 3a, c, e). Thus, the SQM technique was employed to adjust the erroneous precipitation 
estimates, Tmax, and Tmin. The results showed that the biases of all three climate variables were dramatically reduced after cor-
rections using SQM (Fig. 3b, d, and f). The findings indicate that the SQM approach significantly lowered the biases in the CMIP6 
GCMs, allowing the findings to be utilized for effective CC impact assessments. Hence, the average MME bias-corrected results were 
used to investigate predicted future temperature and precipitation changes across Bangladesh from 2015 to 2100. 

4.2. Air temperature and precipitation projection 

4.2.1. Mean monthly projection 
To further understand seasonal variations, the mean changes in precipitation, Tmax, and Tmin for various months were also looked 

Fig. 4. Monthly precipitation (mm) cycle for the historical period and four SSPs in three future periods. The shaded area represents the uncertainty 
(one inter-model standard deviation) of 18 CMIP6 GCMs. 
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at. All four SSPs were used to examine the expected variations in precipitation, Tmax, and Tmin for various months across three time 
periods (2015–2044, 2044–2074, and 2075–2100). These changes are presented in Figs. 4–6 for SSP1-2.6, SSP2-4.5, and SSP3-7.0. 
SSP1-2.6, SSP2-4.5, and SSP3-7.0 all have these alterations seen in Figs. 4–6. 

Fig. 4 and Table 1 depicts a rise in precipitation (%) in certain future periods and scenarios in all months other than November 
through March. For all SSPs, the far future rise in rainfall was predicted to be greater than the increases in the near- and far futures. In 
January, the precipitation values for SSP2-4.5 and SSP3-7.0 are expected to fall by 6.65 and 13.92%, respectively, in the mid-future. In 
the near future, the precipitation in February is predicted to fall by 10.08% and 11.33% for SSP1-2.6 and SSP5-8.5, respectively. The 
highest reduction in precipitation for the month of December was anticipated to be 30.70% in the mid-future, according to SSP3-7.0, 
followed by 20.16% in the far-future, according to SSP2-4.5. In the far future, SSP5-8.5 will see an increase in precipitation of more 
than 45% between September and November. 

Fig. 5 and Table 2 illustrate the anticipated changes in mean monthly maximum temperature (Tmax) for the near, mid, and far 
futures under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. Tmax was projected to increase in all months for all futures 
and SSPs. The greatest increase in Tmax would be in February by 0.33–0.64 ◦C in the near, 1.27–1.97 ◦C in the mid and 1.31–3.88 ◦C in 
the far future for all SSPs, while relatively less increase in the June–August. However, a larger increase in Tmax will be in the far future 
than in the near and mid future for all SSPs. 

Fig. 6 and Table 3 illustrate the anticipated change in average monthly Tmin for the near, mid, and far futures for different SSPs. In 
all months, the estimated monthly Tmin increased for all periods and SSPs. November would expose to the biggest increase in Tmin by 
0.73–0.82 ◦C in the near, 1.45–2.53 ◦C in the mid, and 1.34–4.57 ◦C in the far future for all SSPs, whereas June–August would 
experience a relatively smaller increase. However, like Tmax, Tmin will increase more in the far future than other periods for all SSPs. 

4.2.2. Annual temporal projected changes 
Fig. 7 displays long-term projections for area-averaged precipitation, Tmax, and Tmin across Bangladesh. Precipitation and air 

temperature exhibited a variable rising trend from 2015 to 2100 for different scenarios. Fig. S1 of the supplementary material shows 
the change in annual precipitation and air temperature (Tmax and Tmin) compared to 1985–2014. 

The annual precipitation changes across Bangladesh from 2015 to 2100 was: 1.75%–21.06% for SSP1-2.6, − 2.6%–19.3% for SSP2- 
4.5, − 3.3%–30.3% for SSP3-7.0, and 0.6%–47.9% for SSP5–8.5 (Fig. S1a). In the far future (2075–2100), the mean precipitation across 
Bangladesh was projected to increase most by 30.9% for SSP5-8.5, followed by 21.1% for SSP2-4.5 and 13.6% for SSP3-7.0, and the 

Fig. 5. Monthly cycle of Tmax (◦C) for the historical period and four SSPs in three future periods. The shaded area represents the uncertainty (one 
inter-model standard deviation) of 18 CMIP6 GCMs. 

M. Kamruzzaman et al.                                                                                                                                                                                              



Heliyon 9 (2023) e16274

9

least projected precipitation increase was 9.5% for SSP1-2.6. 
From 2015 to 2100, the average annual Tmax and Tmin went up almost the same amount in Fig. 7b and c. Both temperatures were 

projected to rise continuously for SSP3-7.0 and SSP5-8.5. However, the temperatures were predicted to rise slightly just before the mid- 
century and to fall gently later (around 2075) under SSP1-2.6. (Fig. S1 b, c). SSP1-2.6 was the only scenario where the temperature 
increases by 2100 were less than 2 ◦C, as shown in Fig. 5b, c. After 2085, it is expected that the increases in Tmax and Tmin for SSP2-4.5 
would still be greater than 2 ◦C. For SSP5-8.5, the average Tmax (Tmin) was predicted to rise more than 2 ◦C by around 2070 (2060), 
suggesting that Tmin will rise faster than Tmax. Furthermore, the variations in projected air temperature increases between the various 
scenarios were comparatively lower until 2055 for both Tmax and Tmin but increased gradually after that. In the far future, the 
average annual Tmax (Tmin) was projected to rise by 1.10 (1.17 ◦C), 1.60 (1.9 ◦C), 2.12 (2.80 ◦C), and 2.99 (3.6 ◦C) from lower to 
higher SSPs. Fig. 7 suggests a noticeable variability among the 18 models, indicating large uncertainty in the projection of air 

Fig. 6. Monthly cycle of Tmin (◦C) for the historical period and four SSPs in three future periods. The shaded area represents the uncertainty (one 
inter-model standard deviation) of 18 CMIP6 GCMs. 

Table 1 
Changes in monthly precipitation (%) in future periods for four SSPs.  

Future period Scenario Month 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

NF SSP126 2.20 − 10.08 5.14 9.82 0.39 7.50 4.34 2.48 3.57 0.55 10.07 − 7.33 
SSP245 6.96 3.97 − 3.17 4.28 5.32 3.54 3.17 1.88 5.51 1.32 − 7.21 − 19.77 
SSP370 2.78 − 0.25 − 4.70 5.84 1.63 2.92 3.54 3.03 5.62 6.99 0.90 − 15.45 
SSP585 − 0.33 − 11.33 2.42 6.10 0.89 1.05 5.03 7.34 5.71 8.00 12.42 2.81 

MF SSP126 − 5.29 14.77 15.89 7.21 7.10 1.97 8.11 9.11 10.05 11.96 23.71 − 7.75 
SSP245 − 6.65 11.29 11.97 5.38 9.48 7.04 4.83 10.46 9.12 9.91 − 3.48 − 11.82 
SSP370 − 13.92 − 3.25 − 7.54 4.47 7.66 4.89 9.16 8.97 9.13 10.81 4.31 − 30.70 
SSP585 − 9.18 8.33 4.01 9.14 12.02 10.12 8.00 14.57 11.95 17.06 15.11 − 12.24 

FF SSP126 28.04 17.32 12.36 10.54 4.45 6.71 3.78 10.74 7.96 16.65 − 0.36 − 1.25 
SSP245 − 4.81 8.59 7.63 14.63 6.27 10.98 7.37 13.39 13.17 22.12 20.70 − 13.09 
SSP370 1.62 2.76 18.05 12.10 23.09 9.37 11.53 17.31 17.68 20.20 15.63 − 20.16 
SSP585 8.50 23.08 18.16 26.86 22.60 19.39 16.15 22.89 26.88 45.46 24.36 − 11.79  

M. Kamruzzaman et al.                                                                                                                                                                                              



Heliyon 9 (2023) e16274

10

temperature and precipitation. The shaded regions indicate an increase in projection uncertainty with time. 

4.2.3. Spatial variability in projected changes 
Figs. 8–10 show the spatial changes in the projected mean annual precipitation, Tmax and Tmin in the future for four SSPs. The 

projected annual mean precipitation was predicted to rise over Bangladesh in all periods and scenarios relative to the reference 
timeframe (Fig. 8a–l). Notably, precipitation was projected to rise by >12% in the near future (Fig. 8a–d) and by 4–23% in the mid- 
future (Fig. 8e–h) for four SSPs. The most significant rise in precipitation was projected in the far future at 22–50% for SSP5-8.5, 
followed by 15–36% for SSP3-7.0, 8–21% for SSP2-4.5, and 5–14% for SSP1-2.6 (Fig. 8i–l). The most significant rise in average 
annual precipitation was anticipated for northwestern Bangladesh. 

Fig. 9 shows the geographical variability of anticipated annual average Tmax changes for four distinct SSPs. In every scenario, the 
northern and coastal regions are anticipated to experience a greater increase in temperature. The annual mean Tmax was expected to 
rise by 0.86, 0.63, 0.65, and 0.78 ◦C in the near future (Fig. 9a–d) and by 1.43, 1.53, 1.67, and 2.25 ◦C in the mid future for lower to 
higher SSPs, respectively (Fig. 9e–h). In the far future, Tmax is expected to grow by 1.46, 2.03, 2.82, and 3.79 ◦C for four SSPs, 
respectively (Fig. 9i-l). In the far future, the southern coastal area was predicted to have the greatest rise in Tmax (3.5 ◦C). 

Similar to Tmax, Tmin showed a sharp rise across Bangladesh for all four scenarios (Fig. 10). The rise in Tmin was predicted to be 
higher than Tmax and was projected to rise by 0.84, 0.78, 0.80, and 0.82 ◦C in the near future (Fig. 10a–d), 1.50, 1.82, 2.04, and 
2.51 ◦C in the mid-future (Fig. 10e–h), and 1.56, 2.38, 3.34, and 4.26 ◦C in the far, and 2.51 ◦C in the mid-future (Fig. 10e–h), and 1.56, 
2.38, 3.34, and 4.26 ◦C in the far future like Tmax, the greatest rise in average annual Tmin was projected for SSP5-8.5. The largest rise 
in Tmin (≥4 ◦C) was projected for the southern coastal region of Bangladesh. 

4.2.4. Future trends 
MME annual average precipitation, Tmax, and Tmin trends over the period (2015–2100) for various scenarios were investigated 

using TFPW-MK tests and SS analysis (Table 4). There was a statistically significant rising trend (p< 0.01) in all three variables. The 
annual rainfall was projected to rise by 16.88, 35.28, 62.45- and 93.59-mm decade− 1 for SSP1-2.6 to SSP5-8.5, respectively. On the 
other hand, the mean annual Tmax (Tmin) was projected to rise by 0.10 (0.09), 0.21 (0.22), 0.30 (0.37), and 0.44 (0.53) ◦C decade− 1 

for SSP1-2.6 to SSP5-8.5, respectively. For each scenario of emissions, the findings show that precipitation and air temperature would 
rise in Bangladesh. 

Table 2 
Changes in monthly Tmax (◦C) in three future periods for four SSPs.  

Future period Scenario Month 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

NF SSP126 0.52 0.64 0.52 0.53 0.55 0.39 0.37 0.52 0.59 0.52 0.52 0.58 
SSP245 0.34 0.33 0.34 0.21 0.25 0.28 0.35 0.44 0.53 0.42 0.42 0.42 
SSP370 0.36 0.34 0.31 0.15 0.22 0.27 0.34 0.49 0.54 0.43 0.37 0.37 
SSP585 0.33 0.35 0.29 0.20 0.32 0.33 0.34 0.50 0.57 0.46 0.46 0.42 

MF SSP126 1.08 1.27 1.17 1.23 1.15 0.90 0.71 0.81 0.95 0.89 1.00 1.08 
SSP245 1.24 1.33 1.14 1.18 1.05 0.93 0.88 1.00 1.13 1.06 1.22 1.26 
SSP370 1.20 1.29 1.24 1.15 1.00 0.99 0.97 1.15 1.31 1.25 1.24 1.21 
SSP585 1.85 1.97 1.90 1.71 1.62 1.35 1.21 1.39 1.61 1.58 1.83 1.74 

FF SSP126 1.21 1.31 1.33 1.39 1.31 0.94 0.76 0.85 0.94 0.87 1.04 1.19 
SSP245 1.77 1.92 1.86 1.84 1.65 1.28 1.19 1.37 1.49 1.42 1.68 1.71 
SSP370 2.37 2.60 2.40 2.22 1.87 1.70 1.55 1.82 2.05 2.16 2.44 2.31 
SSP585 3.46 3.88 3.59 3.36 2.85 2.38 1.91 2.32 2.62 2.75 3.45 3.38  

Table 3 
Changes in monthly Tmin (◦C) in three future periods for four SSPs.  

Future period Scenario Month 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

NF SSP126 0.70 0.63 0.73 0.64 0.71 0.55 0.41 0.53 0.59 0.76 0.73 0.66 
SSP245 0.66 0.60 0.68 0.54 0.65 0.51 0.41 0.51 0.59 0.74 0.73 0.60 
SSP370 0.64 0.60 0.66 0.54 0.64 0.55 0.43 0.56 0.63 0.83 0.81 0.60 
SSP585 0.63 0.58 0.66 0.55 0.64 0.56 0.44 0.60 0.67 0.82 0.82 0.67 

MF SSP126 1.19 1.35 1.34 1.18 1.22 1.00 0.70 0.84 0.95 1.28 1.45 1.18 
SSP245 1.53 1.65 1.64 1.43 1.45 1.21 0.92 1.10 1.24 1.55 1.68 1.56 
SSP370 1.72 1.85 1.81 1.64 1.66 1.42 1.07 1.32 1.52 1.96 2.01 1.68 
SSP585 2.27 2.33 2.36 2.08 2.07 1.70 1.29 1.55 1.86 2.34 2.53 2.19 

FF SSP126 1.35 1.32 1.46 1.29 1.34 1.04 0.71 0.85 0.94 1.20 1.34 1.24 
SSP245 2.05 2.22 2.28 2.02 1.98 1.59 1.22 1.47 1.65 2.05 2.28 2.11 
SSP370 3.08 3.36 3.25 2.87 2.72 2.29 1.76 2.11 2.53 3.16 3.46 3.05 
SSP585 4.17 4.53 4.40 3.82 3.58 2.94 2.20 2.68 3.19 3.99 4.57 4.20  
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Fig. 11 shows spatial patterns in MME annual precipitation trends from 2015 to 2100 for the four SSPs. The precipitation was 
projected to increase significantly for SSP1-2.6 over most of Bangladesh (p < 0.05) (Fig. 11a). With greater emission levels, more 
regions of Bangladesh will experience a statistically significant upward precipitation trend. A significantly increasing rainfall trend was 
projected over the whole of Bangladesh for SSP2-4.5 (Fig. 11b), SSP3-7.0 (Fig. 11c), and SSP5- 8.5 (Fig. 11d). The spatial distribution 
of the changes revealed that the increased annual precipitation would steadily increase from the south to the north of Bangladesh, 
especially northeastern regions. 

Fig. 12 shows the variation in average annual Tmax trends around the country for the four SSP scenarios from 2015 to 2100. The 
projected Tmax displayed a significant increasing trend across all of Bangladesh over the twenty-first century for all SSPs. The Tmax 
demonstrated a comparatively lower rate of warming (<0.15 ◦C decade− 1) across Bangladesh for SSP1-2.6 (Fig. 12a). Still, the 
warming was more rapid (0.13–0.26 ◦C decade− 1) for SSP2-4.5 (Fig. 12b) and even more rapid (0.22–0.38 ◦C decade− 1) for SSP3-7.0 
(Fig. 12c). The highest rising rate was predicted for SSP5-8.5 by 0.32–0.52 ◦C decade− 1 over most of Bangladesh (Fig. 12d). 

The spatial distribution of the annual average Tmin trends for 2015–2100 for four SSPs is shown in Fig. 13. The projected Tmin 
exhibited a significant increasing trend (p < 0.05) over Bangladesh during 2015–2100. The warming rates of the mean annual Tmin 
were also greater for greater greenhouse gas emission levels. SSP1-2.6 provided the least rate of increase for Tmin (◦C decade− 1) across 
the country (Fig. 13a). A more rapid warming of 0.19–0.28 ◦C decade− 1 was projected for SSP2-4.5 (Figs. 13b) and 0.33–0.44 ◦C 
decade− 1 for SSP3-7.0 (Fig. 13c). The largest rate of increase for Tmin was 0.47–0.6 ◦C decade− 1 for SSP5-8.5 (Fig. 13d). The highest 
increased was demonstrated in the western part and southern coastal region of Bangladesh. 

Fig. 7. Areal average annual (a) precipitation (mm), (b) Tmax (◦C), and (c) Tmin (◦C) in Bangladesh from 1985 to 2100. Historical simulations 
(red), SSP12.6 (light green), SSP24.5 (green), SSP370 (blue), and SSP5-8.5 (pink) from the mean (solid line) of the MME, with one inter-model 
standard deviation (shaded area). 
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4.2.5. Seasonal analysis 
Table 5 details the projected changes in seasonal average precipitation, Tmax, and Tmin from the historical epoch over three 

different durations. 

4.2.5.1. Precipitation. Monsoon, pre-monsoon, and post-monsoon seasons observed a rise in precipitation, whereas winter seasons 
experienced a drop across all scenarios and time periods (Table 6). The post-monsoon was predicted to have the greatest precipitation 
increase. For the SSP5-8.5 scenario, an increase of 16.74% was predicted in the near future, while a significantly higher increase of 
41.98% was projected for the far future. The monsoon and post-monsoon precipitations were projected to increase by 20.80% and 
23.41% in the far future for SSP5-8.5, respectively. SSP2-4.5 was anticipated to have the smallest increase in monsoon precipitation 
(3.45%). Precipitation levels after the monsoon (post-monsoon) were predicted to drop by 0.09% for SSP2-4.5 in the near future. The 
predicted change in winter precipitation was between − 7.02% and 15.62% for SSP1-2.6, − 0.36% and 2.86% for SSP2-4.5, − 2.24% 
and − 11.12% for SSP3-7.0, and between − 6.17% and 12.88% for SSP5-8.5. SSP3-7.0 projected the most significant precipitation 
decrease (11.12%) in the mid-future. 

4.2.5.2. Temperature. Winter showed the most substantial rise in Tmax and Tmin, whereas the monsoon season showed the least for 
all future periods and scenarios. The winter Tmax (Tmin) was projected to rise by 1.16 (1.24), 1.71 (2.10), 2.32 (3.12), 3.44 ◦C (4.26 
◦C) for SSP1-2.6 to SSP5-8.5, respectively, in the far future. In contrast, monsoon Tmax (Tmin) was predicted to increase by 0.84 
(0.88), 1.26 (1.45), 1.71 (2.14), 2.18 ◦C (2.70 ◦C) for SSP1-2.6 to SSP5-8.5, respectively, in far-future. The pre-and post-monsoon Tmax 
(Tmin) were projected to rise by 3.22 (3.71) and 2.98 ◦C (4.20 ◦C), respectively, for SSP5-8.5. 

4.2.6. The uncertainties of the projected changes 
Uncertainties in future precipitation and temperature downscaling or projections are unavoidable [33]. They are the major con-

trolling factor in impact assessment, especially on the local or regional scale [65]. The widely used MME approach to minimize the 
uncertainties was used herein [66,67]. Box and whisker diagrams were employed to exhibit the ±1 inter-model SD (boxes) and 
inter-model range (whiskers) for analyzing the uncertainty in the projected air temperature and precipitation (Fig. 14). The findings 
illustrated that the uncertainty in projected precipitation, Tmax, Tmin, increased over time for all scenarios. This is consistent with the 
results presented in Fig. 7. For the near and mid futures, the uncertainties in precipitation, Tmax, and Tmin were identical for all 
scenarios. However, the uncertainties for the SSP5-8.5 were greater than the others in the far future. Moreover, Fig. 14 indicates the 
MME mean projection has lower uncertainty ranges than each of the 18 bias-corrected models. Despite the advancements, 

Fig. 8. Changes (%) in annual mean precipitation in the (a–c) near, (d–f) mid, and (g–i) far futures for four SPPs.  
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uncertainties remain in the projected air temperature and precipitation. More research is needed to reduce these uncertainties. In 
reality, a small MME can be chosen by removing those that are deemed unrealistic to reduce the GCM-related uncertainty [68]. 

4.2.7. Evaluation of before and after bias-corrected data 
Table 6 shows the evaluation of the MME mean precipitation, Tmax, and Tmin of the original and bias-corrected projections. The 

findings suggest that raw GCM rainfall projections are lower than the bias-corrected precipitation projections for the identical period 
and scenario, whereas Tmax and Tmin projections of raw GCMs are greater than the bias-corrected data. The findings confirm that the 
CMIP6 GCMs underestimated the precipitation and overestimated Tmax and Tmin for Bangladesh (Section 4.1). This suggests the need 
for bias correction of climate data for Bangladesh before the change and trend analysis. 

The bias-corrected average MME showed a considerable rise in precipitation across Bangladesh for the period 2015–2100. The 
lowest and greatest increases were projected for SSP1-2.6 and SSP5-8.5, respectively. The Tmax and Tmin were also projected to rise 
across Bangladesh for all four scenarios. However, the rate of rise was nearly identical for the various scenarios. The air temperature 
was projected to rise continuously over time for SSP3-7.0 and SSP5-8.5, but it is likely to rise in the near and mid futures and then be 
steady or slightly drop in the far future for SSP1-2.6. Tmin was projected to rise faster than Tmax for all periods and scenarios, which 
coincided with the findings of past investigations across Bangladesh using CMIP5 GCMs [69]. 

5. Discussion 

5.1. Bias-correction and uncertainties 

This study presents a comprehensive analysis of temperature and precipitation projections for Bangladesh using CMIP6 GCMs. It 
provides valuable insights into the expected changes in precipitation, Tmax, and Tmin for Bangladesh, which is crucial for climate 
impact assessment and long-term adaptation planning. The SQM approach effectively reduced the biases in CMIP6 GCMs, and the bias- 
corrected output demonstrated a higher agreement with the historical observations. In addition, the MME of the GCMs outperformed 
the individual models in simulating all climate variables. The consistency of these findings across multiple studies highlights the 
importance of the SQM technique in climate modeling [21,48,49,70]. Many studies have shown that the MME forecast performance is 
superior to the forecast of an individual (one-model-based) ensemble prediction systems [71–75]. The findings suggest that MME 
approach can provide more accurate and robust climate projections, which can inform long-term adaptation planning and 
decision-making. As CC continues to pose significant challenges to vulnerable regions such as Bangladesh, the use of advanced 

Fig. 9. Changes (◦C) in annual mean Tmax in the (a–c) near, (d–f) mid, and (g–i) far futures for four SPPs.  
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modeling techniques like SQM is crucial for developing effective adaptation strategies and building climate resilience. 

5.2. Mean monthly projection 

The precipitation is expected to increase in future periods and scenarios considered in all months except for few scenarios in 
November–March. The rise in rainfall for far future is predicted to be greater than in the near- and mid-futures, which agrees with 
previous studies where increased rainfall during May–October for RCP4.5 and all three future periods for RCP8.5 were reported [11]. 
Such increase in rainfall would be beneficial for irrigated crops but could be harmful for excess soil water sensitive crops. Depending on 
the scenarios and time period during December–January, a decline in rainfall may lead to a rise in irrigation costs in the future. 
Conversely, the projections for the SSP5-8.5 scenario in the far future indicate that the region could encounter a precipitation surge of 
more than 45% from September to November. This suggests that the effect of climate change on precipitation could intensify with time, 
potentially affecting water availability, agricultural productivity, and flood risk in the area. 

Although Tmax and Tmin would be increased in all months for all futures and SSPs, the warming is expected to be more pronounced 
in winter months (December–February). However, Tmin is projected to increase more than Tmax for all periods and scenarios. which is 
coincided with the findings of past investigations for the MME of CMIP5 GCMs over Bangladesh [18,19,76]. Moreover, both Tmax and 
Tmin are predicted to rise sharply across Bangladesh, with the coastal areas and northern region expected to experience the greatest 
increase which is partially coincided with the previous study of [19] using CMIP5 GCMs. As a result, diurnal temperature range (DTR) 
would decrease in future, that has potential negative consequences in public health and agricultural production [19,77]. Increase in 

Fig. 10. Changes (◦C) in annual mean Tmin in the (a–c) near, (d–f) mid, and (g–i) far futures for four SPPs.  

Table 4 
Trends in the MME mean annual rainfall, Tmax and Tmin from 2015 to 2100.  

Climatic variable SSP126 SSP245 SSP370 SSP585 

Z Slope Z Slope Z Slope Z Slope 

Precipitation 3.62 16.88 9.75 35.28 5.61 62.45 7.90 93.59 
Tmax 3.32 0.10 6.45 0.21 9.01 0.30 5.37 0.44 
Tmin 2.76 0.09 5.78 0.22 5.28 0.37 4.57 0.53 

Note: |Z| >2.58 indicates significance at 0.01. Sen’s slope estimator uses the following units for precipitation, Tmax, and Tmin: mm decade− 1, ◦C 
decade− 1, and ◦C decade− 1, respectively. 
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night temperature will augment higher respiratory losses in crops and thus reduced grain yield. Moreover, comfortable temperature 
zone for growth and development for livestock and fishes would be hampered greatly. 

5.3. Annual projection 

The study showed anticipated increase in precipitation by 9.48%, 13.63%, 21.07%, and 30.90% for SSP1-2.6, SSP2-4.5, SSP3-7.0, 
and SSP5-8.5, respectively. This result is coincided with the findings of [11]. Using a Multi-Model Ensemble (MME) of 40 CMIP5 Global 
Climate Models (GCMs), it was projected that Bangladesh may experience an increase in annual rainfall of 2.76–5.98% and 
6.98–26.44% under RCP4.5 and RCP8.5 scenarios, respectively. 

In addition, the average Tmax (Tmin) is projected to rise by 1.09 (1.17), 1.60 (1.91), 2.12 (2.80), and 2.99 (3.69) ◦C for the same 
scenarios in the far future. The rise in both Tmax and Tmin is also projected to be higher in the far future, in line with previous studies. 
Caesar et al. [17] utilized a 17-member perturbed physics ensemble of projections from a GCM to drive their RCM over South Asia from 
1971 to 2099 and reported a projected increase in annual mean temperature by 2.6–4.8 ◦C by the year 2100, relative to the reference 
period. Similarly, Alamgir et al. [76] used eight CMIP5 GCMs to perform statistical downscaling over Bangladesh and predicted an 
increase in temperature by 2.7–4.7 ◦C under RCP 8.5 by the end of the century. Recently, Islam et al. [19] found that the mean annual 
maximum temperature over Bangladesh is expected to rise by 0.61 ◦C and 1.75 ◦C in the near future and by 0.91 ◦C and 3.85 ◦C in the 
far future for RCP4.5 and RCP8.5, respectively. Also, they predicted that the mean annual minimum temperature would rise by 0.65 ◦C 
and 1.85 ◦C in the near future and by 0.96 ◦C and 4.07 ◦C in the far future for RCP4.5 and RCP8.5, respectively, which is in line with 
what our study found. 

The previous study [19] projected an average temperature rise of 3.24–5.77 ◦C in Bangladesh by the end of the century and 
suggested that the southwest and south-central regions would experience a greater temperature increase. The current study shows that 
in all scenarios, Tmax and Tmin are expected to rise across Bangladesh, with the southern coastal region projected to experience the 
greatest increase in temperature. As southern coastal belt is already vulnerable for agriculture because of water salinity and tem-
perature, further temperature rise will be a great concern for agricultural sustainability in future. The northwestern region, the drier 
part of Bangladesh, is projected to experience the highest increase in precipitation and thus it might be beneficial for that region in 
terms of agricultural productivity. It should be noted that the yearly mean precipitation over the northwestern part of Bangladesh is 
about 1400–1550 mm [78], which is lower across the country. The current study provides more detailed spatial projections of 

Fig. 11. Spatial distribution of the trends in MME mean annual precipitation (in mm decade− 1) during 2015–2100 for (a) SSP1-2.6, (b) SSP2-4.5, (c) 
SSP3-7.0 and (d) SSP5-8.5. The "+" indicates a significant trend at p < 0.05. 
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precipitation and temperature changes under different SSPs, which can help in developing adaptation strategies for Bangladesh. 

5.4. Seasonal projection 

The study found that precipitation in Bangladesh is expected to increase in the monsoon, pre-monsoon, and post-monsoon seasons, 
with the post-monsoon season projected to experience the greatest increase. Winter seasons, on the other hand, are expected to 
experience a decrease in precipitation across most of the scenarios and time periods. The smallest increase in monsoon precipitation 
was anticipated for SSP2-4.5, while the most significant decrease in precipitation was projected for SSP3-7.0 in the mid-future. These 
findings are consistent with previous studies that have also projected an increase in precipitation during monsoon seasons and a 
decrease in winter precipitation in the Bangladesh due to climate change [11,79]. Increase in precipitation during monsoon might 
aggravate flash flood situations in many low-lying areas of the country and thus transplanted aman rice, a dominant rainfed rice crop, 
productivity can be reduced. The greatest increase in temperature was projected for the winter season, while the smallest increase was 
predicted for the monsoon season. The pre- and post-monsoon seasons were also projected to experience a rise in temperature, with the 
greatest increase predicted for SSP5-8.5. However, this study provides more detailed and updated projections using a state-of-the-art 
climate model and a range of different scenarios, allowing for a more comprehensive understanding of the potential impacts of CC on 
the region. 

The results of the study suggest that Bangladesh will experience significant changes in precipitation and temperature patterns in the 
future. The projected increase in precipitation during the monsoon and post-monsoon seasons may lead to an increased risk of flooding 
and other related natural disasters [4,19]. These changes in precipitation patterns may have significant implications for agriculture, 
food security, and water resource management in Bangladesh [21]. On the other hand, the decrease in precipitation during the winter 
season may lead to water scarcity and other associated problems. Any decrease in surface water will increase dependency on 
sub-surface water for irrigation and domestic uses. So, preservation of surface water will be one of the adaptation policies for 
Bangladesh in future. The study’s findings also suggest that there will be a significant increase in temperature across all of Bangladesh, 
with the highest increase predicted for the winter season. This rise in temperature may have adverse effects on public health, 
particularly for vulnerable populations, such as children and the elderly [2,80]. The projected increase in temperature may also lead to 
changes in ecosystems, with potential impacts on biodiversity, ecosystem services, and other ecological processes [81]. 

Fig. 12. Spatial distribution of the trends in MME mean Tmax (◦C decade− 1) during 2015–2100 for (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0 and (d) 
SSP5-8.5. The "+" indicates a significant trend at p < 0.05. 
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5.5. Implications and limitations of the study 

The findings of the research emphasize the pressing requirement for Bangladesh to formulate adaptation strategies to deal with the 
anticipated alterations in precipitation and temperature patterns. These adaptation strategies should focus on improving water 
resource management, promoting climate-resilient agricultural practices, enhancing public health infrastructure, and developing 
climate-resilient infrastructure. The study’s findings also emphasize the importance of global efforts to mitigate greenhouse gas 
emissions and address CC to minimize the adverse impacts on vulnerable countries such as Bangladesh. 

This research also highlights the uncertainties associated with precipitation and air temperature projections in Bangladesh. 
Although the MME method reduced the uncertainties, further efforts are needed to reduce them further. Future studies must focus on 
improving the accuracy of climate models by incorporating more detailed physical processes, expanding the observational network, 
and including regional feedback mechanisms. In addition, the study recommends selecting the best models from the CMIP6 for the 

Fig. 13. Spatial distribution of the trends in MME mean Tmin (◦C decade− 1) during 2015–2100 for (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0 and (d) 
SSP5-8.5. The "+" indicates a significant trend at p < 0.05. 

Table 5 
Changes in seasonal precipitation (%), Tmax (◦C) and Tmin (◦C) for four SSPs in three future periods.  

Variable Scenario Pre-monsoon Monsoon Post-monsoon Winter 

Near Mid Far Near Mid Far Near Mid Far Near Mid Far 

Precipitation SSP1-2.6 3.71 8.05 7.10 4.67 6.96 7.08 2.12 13.90 13.84 − 7.02 6.04 15.62 
SSP2-4.5 4.12 8.51 8.92 3.45 7.63 10.97 − 0.09 7.70 21.89 − 0.36 2.86 1.37 
SSP3-7.0 2.23 5.11 19.27 3.66 7.87 13.48 5.98 9.74 19.45 − 2.80 − 11.12 − 2.24 
SSP5.-8.5 2.61 10.32 23.41 4.55 10.93 20.80 8.73 16.74 41.98 − 6.17 0.52 12.88 

Tmax SSP1-2.6 0.50 1.10 1.29 0.46 0.82 0.84 0.54 0.94 0.93 0.58 1.07 1.16 
SSP2-4.5 0.29 1.07 1.70 0.37 0.95 1.26 0.47 1.11 1.47 0.41 1.26 1.71 
SSP3-7.0 0.26 1.09 2.00 0.39 1.04 1.71 0.41 1.27 2.25 0.35 1.24 2.32 
SSP5.-8.5 0.33 1.76 3.22 0.40 1.33 2.18 0.49 1.65 2.98 0.48 1.86 3.44 

Tmin SSP1-2.6 0.68 1.19 1.27 0.52 0.84 0.88 0.77 1.33 1.28 0.66 1.21 1.24 
SSP2-4.5 0.64 1.44 1.97 0.52 0.84 0.88 0.76 1.59 2.12 0.61 1.58 2.10 
SSP1-2.6 0.63 1.60 2.74 0.51 1.10 1.45 0.79 1.97 3.27 0.61 1.74 3.12 
SSP2-4.5 0.68 2.15 3.71 0.52 1.28 2.14 0.88 2.39 4.20 0.70 2.28 4.26  
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regional climate across Bangladesh and applying MME based on GCM’s performance-based weight for more accurate climate 
projections. 

The study provides crucial information for policymakers, researchers, and practitioners to plan and implement adaptation mea-
sures to minimize the negative impacts and harness the positive effects of CC in Bangladesh. The findings underscore the need for 
continued efforts to improve the accuracy of climate models and reduce uncertainties to make informed decisions for CC impact 
assessment and long-term adaptation planning. 

6. Conclusions 

This study employed the SQM technique to remove biases from CMIP6 GCMs and generated bias-corrected projections of pre-
cipitation, Tmax, and Tmin for Bangladesh. The results showed that the MME of the 18 GCMs outperformed individual GCMs and 
produced significantly improved bias-corrected projections for all three climate variables. The findings suggest that precipitation is 
expected to increase in certain future periods and scenarios in all months except November through March. However, the rise in 
rainfall for the far future is predicted to be greater than the increases in the near- and mid-futures. The study also revealed that Tmax 
and Tmin are expected to rise across Bangladesh, with the southern coastal region projected to experience the greatest increase in 
temperature. The projected rise in precipitation is anticipated to be significant in all scenarios, with the most significant increase 
projected in the far future for SSP5-8.5. Furthermore, the study found that precipitation and air temperature projections in Bangladesh 
are prone to large uncertainties, highlighting the need for further studies to minimize uncertainties in projections for CC impact 
assessment. 

Overall, the results of this study have significant implications for climate impact assessment and long-term adaptation planning in 
Bangladesh. The findings can be used to inform policy decisions and guide strategies to mitigate and adapt to the effects of CC in the 
country. However, more research is required to reduce the uncertainties in climate projections further and enhance our understanding 
of the complex interactions between different climatic variables in the region. 

Table 6 
Raw and bias-corrected GCM projections of precipitation and air temperature across Bangladesh.  

Variables Scenarios Projection based on raw data Projection based on bias corrected data 

Near Mid Far Near Mid Far 

Rainfall (mm) SSP126 1699.09 1764.15 1987.46 2455.66 2555.73 2549.82 
SSP245 1685.33 1756.72 1798.71 2431.72 2566.68 2646.37 
SSP370 1692.29 1751.07 1913.36 2439.88 2551.52 2819.63 
SSP585 1697.80 1822.75 2048.15 2462.79 2664.80 3048.79 

Tmax (◦C) SSP126 31.14 31.75 30.41 29.67 30.17 30.24 
SSP245 30.94 31.89 32.50 29.51 30.27 30.75 
SSP370 30.91 31.93 33.18 29.50 30.32 31.27 
SSP585 30.95 32.56 34.30 29.53 30.80 32.14 

Tmin (◦C) SSP126 22.09 22.66 22.84 21.769 22.27 22.30 
SSP245 22.03 22.98 23.57 21.73 22.54 23.04 
SSP370 22.05 23.25 24.63 21.75 22.76 23.93 
SSP585 22.07 23.742 25.68 21.77 23.17 24.82  

Fig. 14. Box-and-whisker graphs illustrating the projected changes in (a) precipitation (%), (b) Tmax (◦C), and (c) Tmin (◦C) throughout 
Bangladesh in three future periods for SSPs. The box’s band represents MME mean. The bottom (top) of the box reflects the MME mean minus (plus) 
one standard deviation, while the whiskers show the minimum and maximum simulated changes, respectively. 
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